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PREFACE

Satellite-based altimetric data taken by GEOS-3, SEASAT and GEOSAT over the Aral Sea,

the Black Sea and the Caspian Sea are analyzed and a least-squares collocation

technique is used to predict the geoid undulations on a 0.25 ° X 0.25 ° grid and to

transform these geoid undulations to free air gravity anomalies. Rapp's 180 X 180

geopotential model is used as the reference surface for the collocation procedure. The

result of geoid-to-gravity transformation is, however, sensitive to the information content

of the reference geopotentlal model used. For example, considerable detailed surface

gravity data have been incorporated into the reference model over the Black Sea,

resulting in a reference model with significant information content at short wavelengths.

Thus estimation of short-wavelength gravity anomalies from gridded geoid heights is

generally reliable over regions such as the Black Sea, using the conventional collocation

technique with local empirical covariance functions. Over regions, such as the Caspian

Sea, where detailed surface data are generally not incorporated into the reference model,

unconventional techniques are needed to obtain reliable gravity anomalies. Based on the

predicted gravity anomalies over these inland seas, speculative tectonic structures arc

identified and geophysical processes are inferred.
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INTRODUCTION

This paper documents and summarizes the processing of satellite altimeter data over

inland seas (the Aral, the Black, and the Caspian Seas) for recovery of area-mean gravity

information. Baaed on predicted gravity anomalies over the inland seas, geophysical

inferences on the tectonic features in this region are made.

Gravity information in this area of the world is not readily available, so the possibility of

obtaining it from the processing of altimeter observations is attractive. The mean surface

level of the seas approximates an equipotential surface. Therefore, information about the

gravity potential and gravity can be obtained from altimetric measurement of the relative

shape of this surface.

Local gravity anomalies recovered from satellite-based altimeter data have been

performed by Knudsen (1987, 1988) in 2 ° x 2 ° areas in North Atlantic ocean, by Mazzega

and Houry (1989) for the Mediterranean and the Black Seas, by Au et al. (1989a) over the

Black and the Caspian Seas, and by Au et al. (1990) over the Aral Sea. The local

covariance functions used in the works of Knudsen ( 1987, 1988) and Mazzega and Houry

(1989) are determined from spectral analysis of global models, whereas those in our

previous work are determined by numerical convolution. Although these two processes

are ideally equivalent given complete global data, the convolution method ensures the

integration of available local information into the covariance functions.

The basic approach used by this study is:

1. Edit geoid height data to remove overland data;

2. Evaluate geoid height differences at crossover points;

3. Remove orbit errors from geoid heights using crossover differences;

4. Grid geoid height data at 0.25 ° x 0.25 ° intervals;

5. Estimate 0.25 ° x 0.25 ° gravity anomalies from griddcd gcoid heights using the

collocation technique.

The need for step 1 Is obvious. Steps 2 and 3 are necessary because satellite altimeter

measurements cannot yield accurate sea-surface heights unless variations in satellite

heights due to orbit errors are removed and all passes are reduced to a common

reference. If the sea-surface elevation at a given location is constant over the time span

of the altimeter data used, any difference in surface height between two crossing altimeter

passes is due to orbit differences. Differences in sea-surface elevation up to about 50 cm

could be due to tides, especially solid earth tides, whose amplitude is about 25 cm.

Because the orbit differences are nearly constant for the short arcs over the inland seas,

removal of a constant bias from each pass based on crossover differences should

effectively rectify orbit differences. In this process, one pass is held fixed, whereas all

others are adjusted relative to it. The height of the reference pass, then, is adjusted to

agree with the mean sea-surface elevation of the sea. Area-mean surface-height values are

determined and reduced to the reference geoid in step 4. In step 5 these area-mean gcoid

heights are processed and area-mean gravity anomaly values arc predicted using a linear

least-squares estimation technique, called collocation, formulated by Moritz (1978). The



collocationtechniqueis essentiallya differentialoperationtransforminggeopotential
informationto its first derivative, gravity. Knowledge of the statistical correlation

between area-mean geoid heights and gravity anomalies is required in the geoid-to-gravity

transformation.

Of the three sources of altimeter data used, GEOS-3 altimeter data is of lowest quality

(standard deviation between 25 and 50 cm, depending on operating mode; see Wagner,

1979) and is of lower quality than that of SEASAT (standard deviation from 6 to 10 cm;

see Townsend, 1980), primarily because SEASAT used an advanced radar altimeter

design. SEASAT data, in turn, is of lower quality than that of GEOSAT (standard

deviation less than 5 cm; see Cheney et al., 1989). The two GEOS-3 altimeter operating

modes, Intensive and global, are differentiated primarily by data rate, which explalns.the

corresponding difference in quality. The GEOS-3 mission collected data between 1975

and 1978 over latitudes up to 65 degrees, whereas SEASAT collected data only during

100 days in 1978 over latitudes up to 72 degrees. The GEOSAT, since October 1986, has

repeated the same ground track of the ill-fated SEASAT in a 17-day Exact Repeat Mission
(ERM).

In the next section, steps I to 3 are discussed in detail. Results of the application of

least-squares collocation technique to both geoid gridding and gravity prediction are

presented in section III. A discussion on the robustness of the algorithm used in the

gravity prediction is given in Section W. In Section V geophysical inferences on the

inland sea region are attempted based on the predicted gravity results. Detail

documentation of the work over the Black and the Caspian Seas using GOES-3 and

SEASAT altimeter data can be found in Au et al. (1989a), whereas detailed analysis of

gravity prediction for the Aral Sea using altimeter data can be found in Au et al. (1990).

The program software package used in the altimetry analysis is given in Au et al. (1989b).
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H. ALTIMETER DATA

Altimeter data over the inland seas, were obtained from NASA/GSFC in the GEODYN

program format. All available GEOS-3 and SEASAT data are used in the analysis. The

inclusion of GEOSAT Extended Repeat Mission (ERM) data in the analysis over the Black

Sea and the Caspian Sea does not substantially improve the geometry of the data

coverage over the two areas, because the location of the GEOSAT and the SEASAT

subtracka are nearly coincident. Therefore, from each set of the GEOSAT ERM repeat

passes over the two seas only one representative pass has been used. On the other hand,

due to the scarcity of data over the Aral Sea, as many GEOSAT repeat passes as possible

are considered in the data analysis.

The geodetic positions of the altimeter ground track data of the three satellites over the

Aral, the Black and the Caspian Sea are shown in Figures I, 2 and 3, respectively. There

are 83 GEOS-3, 62 SEASAT and 20 GEOSAT passes over the Black Sea written in 10146

data records. Over the Caspian Sea there are 71 GEOS-3, 23 SEASAT and 15 GEOSAT

passes written in 21484 data records. Over the Aral Sea there are only 7 GEOS-3, 16

SEASAT, but 151 GEOSAT passes written in 3037 data records. Visual examination of

these surface elevation profiles over the Black and Caspian Seas suggests that the data

are relatively noiseless, except for a few occurrences of data spikes and data gaps. In

subsequent data processing, data spikes were eliminated by removing data points that

deviate from adjacent values by more than an a priori assignment, which is 2 m for the

Black Sea and 10 m for the Caspian Sea. An in-depth description of the data-cleanup

process for GOES-3 and SEASAT over the Black Sea and the Caspian can be found in ALl

et al. (1989a).

It can be seen, however, from Figure 1 that the data coverage over the Aral Sea is

incomplete and inhomogeneous, with major data gaps in the northwestern and

southeastern regions. The quality of the data over the Aral Sea is also disappointing,

with large number of data spikes, especially at the beginning and end of each ground

track profile. Because it is diffic_It to distinguish signal from noise in an unadjusted

satellite pass, over-enthusiastic data-cleaning will result in unnecessary decimation of the

already small data set. Data spikes were, therefore, not edited out prior to satellite pass

crossover adjustment. However, crossovers in the vicinity of data splkcs were excluded

from crossover adjustment. Questionable data records after crossover adjustment were

again examined to determine if they are a consequence of loss-of-phase-lock, especially if

they are at the beginning or at the end of a pass. Noisy data records, then, were removed

from subsequent analysis. An in-depth description of the data-cleanup process for

GOES-3, SEASAT and GEOSAT over the Aral Sea can be found in Au et al. (1990).

Crossover Adjustments

The major error source in altimetric geoid undulations is the uncertainty in the radial

component of the satellite trajectory. This uncertainty is manifest in the mlsclosure of

surface elevation at ground-track intersections (crossovers) between passes. For the

short arcs of data considered here, the orbit error can be modeled as a bias applied to all

the data of a given pass. The optimum biases are such that crossover differences are
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minimized,holding one pass fixed so that all the satellite passes can be defined with

respect to a common reference model.

To calculate crossover differences, one must first locate the crossover location in latitude

and longitude. There are various methods by which this point can be determined. We

have adopted an analytical method of modelling the ground track of the pass. For

relatively short arcs, such as the satellite passes over the inland seas, the ground track

can be approximated by a second-degree equation,

Y--aX 2 +bX +c

(I)

where Y and X are, respectively, the latitude and longitude vectors of ground track

records, and a, b and c are polynomial coefficients to be determined by fitting the ground

track data using the method of least-squares. The error in this satellite arc

representation is leas than I Km, which is considerably less than the radius of the

illuminated area of the altimeter signal at the sea surface. When the latitudes of the

crossover point of two passes, YI and Y2' are set equal, YI = Y2. the longitude at which

this crossover occurs is determined by solving the quadratic equation for X, subject to

the crossover point lying within the latitude and longitude range of the ground-track

records of both passes.

Once the crossover point is located, the altimetric height is interpolated by cubic splines

from the nearest data for each pass. The true geoid undulation at a crossover point must

be the same for both passes regardless of satellite and time. Altimetric height, however,

is not exactly the same as geold undulation. For example, temporal processes such as

solid earth and ocean tides may cause the sea-surface height to be different at the

different times of the crossing altimeter passes. Ocean tides on small seas like these

should contribute less than I0 cm to the crossover difference, but diurnal earth tides

may be expected to contribute up to about 30 cm. Fortunately, tides are such broad-

scale features in both space and time that they are manifest as a constant bias in a single

altimeter pass over small inland seas. Thus any earth tide effects will alias with the orbit

error bias and be removed when this bias is adjusted. To illustrate this adjustment, let

Hi ° be the true geoid undulation for pass i at a crossover point and b I be the bias

assumed for this pass. The observed geoicl undulation H t is given by

H t = Hi ° + b t + e i (2)

where e I Is the random noise at the crossover point for pass t. The difference dlj at a

crossover point between pass t and passJ will be

d U = H i - Hj

= till ° + b t + el)-(Hj ° + bj + _j )

= bl-b J + ( el-ej ) (3)
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because Ht ° and Hj ° must be identical at a crossover point. An over-determined system
of equations in b results if all crossovers of each pass with all others are considered.

The bias for each pass, therefore, can be determined using the method of weighted least-

squares, thus mlnim[zlng the crossover differences d. The standard error is assumed to

be 25 cm for GEOS-3, 10 cm for SEASAT and 5 cm for GEOSAT in the weight matrix.

The optimal pass blas vector B is given by

B = (XwA)- (7 WD) {4)

where D is the vector of crossover differences, W is a diagonal matrix in which diagonal

elements are the sum of the inverse of the variance of the altimetric data from each

sateIIlt¢. The matrixA is sparse. Each row of A contains all zeros except uni .tary value in

the column associated with a pass i and a negative unitary value In the column

associated with paaaJ.

The pass with the most crossovers is chosen as the reference pass because it has the

most direct influence on other passes. The bias for this pass is not estimated, but, after

the crossover-adjustment process, is assigned the average value of the reference surface

geoid height along this ground-track, as calculated from a reference geopotential model.

Rapp's 180 X 180 model is the reference geopotential model used in the current report.

An error covarlance matrix of the crossover adjustment was also determined. This error

covariance matrix Is added to the error associated with each satellite pass to create a

more complete error estimate for determining relative data quality in subsequent gridding

and gravity prediction operations.

From the geometry of altimeter passes in the current data set, there are at most 2511

crossovers over the Black Sea. These posslble crossover locations were carefully checked

to eliminate those that coincided with data gaps, which is defined to be part of a satellite
arc that did not have an altimeter observation for 70 km, about I0 seconds in time.

Such editing reduced the number of crossovers to 2208, 494 of which are GEOS-3 with

GEOS-3, 350 are SEASAT with SEASAT, 16 are GEOSAT with GEOSAT, I000 are GOES-

3 with SEASAT, 243 are GOES-3 with GEOSAT and 105 are SEASAT with GEOSAT. The

RMS (root-mean-square) of the crossover residuals before bias adjustment is 3.84 m.

The RMS after bias adjustment Is reduced to 24 cm. The reference pass is the GEOS-3

pass # 10557, and its adjusted reference profile and corresponding reference model is

shown In Figure 4.

Over the Caspian Sea, there are at most 1380 crossovers. The crossovcr-selectlon

process described above for the Black Sea was also applied to the Caspian Sea. This
reduced the number of crossovers to 1217, 481 of which are GEOS-3 with GEOS-3, 70

are SEASAT with SEASAT, 19 are GEOSAT with GEOSAT, 387 arc GOES-3 with

SEASAT, 188 are GOES-3 with GEOSAT and 72 are SEASAT with GEOSAT. The RMS of

the crossover residuals before bias adjustment is 2.19 m, and reduced to 28 cm after

bias adjustment. The reference pass is the SEASAT pass #832, and its adjusted

reference profile and corresponding reference model is shown in Figure 5.

Over the Aral Sea, there are at most 3220 crossovers. The crossover-selection process

8
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wasappliedto theAral Seadata set, and ten passes that cross no other passes were also

removed. This reduced the total number of crossovers to 1136, none of which is GEOS-3

with GEOS-3, 30 are SEASAT with SEASAT, 803 are GEOSAT with GEOSAT, 17 are

GOES-3 with SEASAT, 85 are GOES-3 with GEOSAT and 201 are SEASAT with GEOSAT.

The RMS of the crossover residuals before bias adjustment Is 5.70 m, whereas the RMS

after bias adjustment is reduced to 17 cm. This reduced level of crossover error is to be

expected given the preponderance of high-quality GEOSAT-GEOSAT crossovers. The

reference pass is the GOES-3 pass #6547. The adjusted reference profile and its

corresponding reference model Is shown in Figure 6.

After the data were corrected for pass biases, an overall bias representing the average

difference in height between the reference pass and the reference geoid is added to the

data. For the Aral Sea data, the adjustment was about 50 m, for the Black Sea, 2 m and

for the Caspian Sea, -34 m. Some of this adjustment undoubtedly represents the height

of the inland sea above or below mean-sea level (the geoid) as well as an arbitrary level of

orbit error in the reference pass.

HI. APPLICATION OF COLLOCATION TECHNIQUE

Collocation Is a predictive method based on linear least-squares interpolation, in which a

stochastic spatially averaged correlation between observables in the data space is

assumed. An auto-correlation function, which reflects a spatial correlation of observables

in a data space, is used for the purpose of interpolation. For transformations from a

data space into a prediction space, a cross-correlation function, which represents the

spatial correlation between variables in the data space and the prediction space, is

required. In least-squares collocation procedure, these correlation functions are the

geold-geold, geold-gravtty and gravity-gravity covarlance functions. A general description
of collocation can be found in Moritz (1978). A brief review of the collocation method

relevant to the subsequent analysis is given in Au et al. {1989a).

Collocation Gridding of Geoid Undulations

According to the linear least-squares intcrpolation formula, the predictcd geoid

undulation N(P) at a point P is given by

N{P} = CpN(CNN+D)-INp (5}

where CpN Is a covartance vector relating the undulation at P to tile observable in the

neighborhood of P, CNN is the stochastic undulation covarianee matrL, c, D is the error

covarlance matrix that represents the random error associated with each observable and

the error from crossover adjustments, and N I, is a column vector of gcoid undulation

observables in the neighborhood of P. Tile stochastic undulation eovariance matrix is

derived from a geoid-geoid auto-correlation function that reflects the averaged roughness

and topographic correlation of the region concerned. The averaged roughness is manifest

in the form of a covarlance amplitude, whcrcas the topographic correlation is represented
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by a correlation length. In essence, the collocation method assigns a weight to each

observable via the stochastic covariance matrix in a weighted-average process. For

example, if the weights are assigned as a function of the inverse of the square of

distance from the point at which prediction is made, the collocation results coincide

with those derived from weighted-averages based on the inverse of the square of distance.

The variance at the interpolated point is given by

o= --_ C o - CpN(CNN)-ICpN (6)

where C O is the square of the geoid-geoid covariance amplitude.

A variety of covarlance functions have been used in the collocation process. Commonly-

used covarlance functions are the global covarlance functions due to Rapp's 180 X 180

global reference geopotential model (Rapp, 1986), the theoretical self-consistent

covariance functions due to Jordan (Jordan, 1972) and local empirical covariance

functions derived for a specified region (Knudsen, 1987, 1988; Au et al., 1989a, 1990).

The effects of a particular choice of covariance functions on both geoid interpolation and

geoid-to-gravity transformation for local areas such as the Aral Sea, the Black Sea and

the Caspian Sea are discussed in Au et al. (1990, 1989a). Comparing the geoid results

based on Rapp's global covarlance function with those based on the local empirical and

the hybrid Jordan's covariance functions (Au et al., 1989a, 1990), it is noted that geoid

interpolation Is rather Insensitive to the choice of covariance functions even when the

covariance functions are very different. For example, the correlation length of the Rapp's

covarlance functions is about 1.3 °, whereas that of the local empirical covarlance

functions Is about 0. I ° for the Black Sea. The corresponding covariance amplitudes are

1 m for Rapp's geoid-geoid covariance function and 1.6 m for the local empirical geold-

geoid covariance function. However, in the altimetry analysis over the Aral, the Black

and the Caspian Seas, Au et al. (1990, 1989a) found that the results of gravity prediction

from geoid data are sensitive to the choice of covarlance functions.

A local empirical residual covarlance function can be determined based on the difference

between gridded weighted-average geoid undulations (Au et al. 1989a, 1990) and the

reference geoid derived from Rapp's 180 X 180 reference geopotential model. An

empirical computation technique described by Moritz (1978) is used to determine this

local residual covariance function, which is constructed by the convolution of the

difference between the weighted-average geoid data and the reference geoid. The

resultant covarlance function is, in effect, a least-squares filter (Treltel and Robinson,

1966), which determines the contribution of each observable to the predicted value at a

grid point. Plots of local empirical geoid-geoid covariance functions for the Aral Sea, the

Black Sea and the Caspian Sea are shown, respectively, in Figures 7, 8 and 9. Contour

maps of the geold undulations of the Aral Sea, the Black Sea and the Caspian Sea,

gridded with local empirical covariance functions are shown, respectively, in Figures I0,
11 and 12.

The contour maps of the geold undulations according to the reference geopotential

model, Rapp's 180 X 180 model, of the Aral Sea, the Black Sea and the Caspian Sea are

shown ill Figurea 13, 14 and 15, respectively. For the Black Sea, the gridded geoid

13
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closelyresemblesthecorrespondingreferencegeoid. Onthe otherhand,thegridded
geoidsof both theAral and theCaspian Seas deviate substantially from the

corresponding reference geolds. For example, considerable structure and steep gradients

are observed at the eastern and southern parts of the Aral Sea and at the southern part

of the Caspian Sea. Obviously, there is more short-wavelength information in the

reference geoid undulation model of the Black Sea than in the models of the Aral and the

Caspian Seas. The information content of a reference geopotential model has

considerable effect on the quality of gravity anomalies results transformed from geoid
undulation data, as will be seen later.

The estimated errors (square root of the variance) associated with the interpolated geoid

of the Aral Sea, the Black Sea and the Caspian Sea, are 40 cm, 20 cm and 40 cm. Note

from Figures 1-3 that the estimated errors in the gridded data vary inversely with the

density of ground tracks and is much smaller for the Black Sea than for both the Aral

Sea and the Caspian Seas. This disparity in error values reflects somewhat the difference

in the covariance amplitudes of the local empirical covariance functions used and the

larger crossover error over both the Aral and the Caspian Seas, but mostly the less

uniform and sparser data distribution over the Aral and the Caspian Seas.

Estimation of Gravity Anomalies

Analogous to the collocation Interpolation above, geoid undulations can be transformed

into gravity anomalies (Rapp, 1986) according to the equation

hg = CgN(CNN+D)-I(N-NR) + hg R (7)

where Ag is the predicted point gravity anomaly, Cg N is the covariance vector of geoid-to-

gravity transformation, CNN is the covarlance matrix for geoid-geoid Interpolation, D is

the error covariance matrix that is constructed from the variance of the interpolation of

geoid undulations, N is the vector of gridded geoid undulations, N R is the vector of

reference model geold undulations that corresponds to each observed value of N, and 5gR

is the reference model gravity anomaly value at the predicted grid point. The first term in

equation (7) can be regarded as a perturbation on the reference gravity anomalies by tile

deviation of the observed geoid from the reference geoid. The variance of the gravity

prediction is given by

a2 -- Cgg - CgN(CNN+D)- ICg N (8)

where Cgg is the square of the gravity-gravity covariance amplitude. The input data for

the geoid-to-gravity transformation are the collocatlon-gridded geotd undulations and

their corresponding variances. Use of a gridded data set greatly reduced the strain on

computer resources because it contains far fewer data points than the original altimeter

tracks.

A literature search on collocation techniques and local covariance functions for the geoid

and gravity anomalies reveals that local covarlance functions vary markedly from one

area to another. Thus, it should not be a surprise that a single covarlance function does
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not performequallywell for all threeinland seas. In order to performthegeold-to-
gravitytransformationaccuratelyin eachsea,a locallyvalidgeoid-to-gravitycovariance
functionmustfirst beobtained. But the information we need to construct a locally valid

covariance function is exactly that which is to be predicted by the collocation exercise in

equation (7). To resolve this classic "chicken and egg" dilemma, approximate local gravity

anomalies for an inland sea are first predicted using Rapp's global covariance functions

(shown in Figure 16) and the gridded geoid data. Based on this approximate local

empirical gravity-anomaly information, a set of local empirical covariance functions

(shown in Figures 7, 8 and 9) for the Aral Sea, the Black Sea and the Caspian Sea are

derived by numerical convolution.

A set of covarlance functions (geold-geold, geoid-gravlty and gravity-gravity) describes the

physical relationships such as surface roughness and topographical phase relations

between the gravity field and the geoid undulations. In general, there is more high-

frequency information in the gravity field than in the geoid undulations, because gravity

is a derivative of the geoid. Thus, the correlation distance (the half-height length of the

gravity-gravity covariance functions) is shorter than that for the geoid-geoid and geoid-

gravity covariance functions, as is shown in the set of covariance functions for the Black

Sea. This systematic relationship is implicitly observed in Rapp's global covariance

functions, and expllcifly expressed in Jordan's theoretical self-consistent eovariance

functions. Ideally, locally derived empirical covariance functions should also reflect this

systematic relationship. However, this will not be the case if local high-frequency

information Is unavailable due to lack of surface observations. This scenario is

exemplified in the set of local empirical covarlance functions for the Caspian Sea (see

Figure 9), which are practically identical except for their covariance amplitudes. The
reason for these anomalous properties is not known exactly, but it is suspected that the

quality of the reference model in the vicinity of the Caspian Sea is of critical importance.

We note that the empirical covarlance functions for the Black Sea behave normally, and

there is close agreement between the observed geoid and the model geoid over the Black

Sea, in contrast to the striking differences between the observed and model geoids over

the Caspian Sea. Over the Black Sea, accurate short-wavelength geopotential information

has been incorporated in Rapp's 180 X 180 geopotential reference model. The altimeter

measurements, represented by the griddcd geoid heights, add little new information.

This is not the case, however, for the Caspian Sea. It is suspected that the accurate high-

frequency information that was included in Rapp's 180 X 180 geopotential model for the

Black Sea is absent for the Caspian Sea. For such a local region, where high-frequency

surface observations are not available, hybrid local empirical covariance functions based

on Jordan's formulation and using locally derived covariance parameters (eovariance

amplitudes and correlation length) is a logical choice. A set of hybrid covariance

functions for the Caspian Sea are shown in Figure 17. A benchmark test of the viability

of such a hybrid collocation technique has been performed (Au et al., 1989a). The

quality of the transformation from gcoid undulations to gravity anomalies varies

depending on the frequency content of the refcrence geopotential model, calling into

question the robustness of the transformation.

The peak amplitude of the Aral Sca local cmpirical geoid-gravity covariance function (see

Figure 7), however, Is offset from the origin by about 0.1 ° (a case of the split maxima). It
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may be that this anomaly is an artifact caused by the limited extend of the region

involved in the convolution process. In other dlsciplines, split maxima in correlation

functions reveal underlying special symmetries in the pre-convoluted functions. For

example, planar twinning in crystals can be deduced from the split maxima in its

crystallographic correlation function (Cowley and Au, 1978). The split maximum in our

geodetic covarlance function may be related to the symmetries of the reference geoid

surface and reference gravity-anomaly surface. The reference geoid surface (see Figure

13) approximates an inclined plane, whereas the reference gravity-anomaly surface (see

Figure 21) is basically a saddle with the ridge running northeast to southwest. This

special geometry may be manifest as a split maximum in the cross-correlation function.

Such special geometry of the Aral Sea is not seen in the conventional Rapp's global
covariance functions nor in Jordan's self-conslstent covariance functions because the

Rapp's and Jordan's covariance functions are derived according to models, not according

to local topographic symmetries. This sensitivity to local geometry, if true, further

justifies use of the local empirical covariance functions for both geoid gridding and

gravity prediction for the Aral Sea.

Contour maps of the predicted gravity anomalies of the Aral Sea and the Black Sea using

local empirical covariance functions and a contour map of the predicted gravity

anomalies of the Caspian Sea using hybrid local empirical covariance functions are

shown, respectively, in Figures 18, 19 and 20. The corresponding estimated errors in the

gravity prediction are about 24 mgal, 10 mgal and 8 mgal respectively for the Aral, Black,

and Caspian Seas. Again, the disparity in error values mirrors the difference in the

covariance amplitudes of the local empirical covarianee functions used and the larger

variances of the geoid interpolation for the Aral Sea due to the less uniform and sparser

data distribution over the Aral Sea. Contour maps of the Aral Sea, Black Sea and

Caspian Sea reference gravity anomalies based on Rapp's 180 X 180 model are shown,

for comparison, in Figures 21, 22 and 23, respectively. Comparing Figures 18-20 with

Figures 21-23, we see that the geoid-to-gravity transformation adds high-frequency gravity

information over and above that in the reference "models. The geophysical significance of

the results will be discussed in a later section.

IV. ROBUSTNESS TEST FOR THE GEOID-TO-GRAVITY TRANSFORMATION

A review of the literature for covariance functions indicated that the correlation distance

of Rapp's geoid undulation covariance function is much too long, at 3 arc degrees, to be

valid for areas as small as the inland seas. Models by Knudsen (1987) and by Jordan

(1972) Indicated a correlation distance for the gcoid beyond degree 180 of 0.33 and 0.45

arc degrees, respectively. Correlation distance parameters for the gravity covariance

function and the cross-covarlance function also appeared too long, but not by so great a

factor. As a trial, Jordan's self-consistent set of covariance function formulas were used,

setting the geoid function correlation length to 0.5 arc-degrees, with the result that the

estimated gravity anomalies have a closer resemblance to the reference gravity model,

and the Inverse transformation yielded the original geoid (Au et al., 1989a). A

consistency test was designed, then, to study the sensitivity of the geoid-to-gravity
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transformationon theinformationcontent(or qualltyl of thereferencemodel. TheBlack
Seawaschosenfor this testbecauseof theavailabilityof short-wavelengthinformationin
thereferencemodels.

A degradedreferencemodelover the Black Sea is obtained by Including only long

wavelength (36 X 36) terms of Rapp's 180 X 180 model. Contour maps of the geold

undulations and gravity anomalies from this degraded reference model are shown in

Figures 24 and 25, respectively. The geotd-to-gravtty transformation is performed using

both the degraded reference model and Rapp's 180 X 180 covariance function. The

resultant gravity anomalies are shown in Figure 26. It is apparent, comparing with

Figure 22, that the quality of the geoid-to-gravity transformation degrades as that of the

quality of the reference model. A contour map of the difference between the estimated

gravity anomalies using Rapp's 180 X 180 reference model and 36 X 36 reference model

is shown in Figure 27. The RMS of the difference is 11.35 mgal, with several broad areas

where the difference exceeds 15 mgal.

An lteratlve transform process to improve performance when using a poorer reference

model has also been attempted. To evaluate this algorithm in a controlled test, Rapp's

300 X 300 geopotential model is adopted as the true representation of the geoid and

gravity over the BIack Sea. The geoid surface derived from the 300 X 300 model provides

a grid of input data for the geoid-to-gravity transformation. Both the 180 X 180 and 36 X
36 model are tested as reference surfaces in this benchmark test. The iterative

transformation method consists of the following steps:

a)

b}

c)

d)

e)

Use Rapp's covariance function to transform the observed geoid data to

gravity anomalies;

Use the same covartance function to transform the calculated gravity

anomalies back to geoid heights;
Calculate the RMS difference between the transformed result and the

reference model for both the geold and gravity anomalies;

Use the transformed gravity anomalies and transformed geoid results to

form a new set of local residual empirical covariance functions;

Repeat steps a-d using the newly constructed local residual empirical

covariance functions for transformation and using the transformcd results

as new starting refcrence model, until the RMS difference satisfies a

convergence criterion.

It is observed that using the iterativc process for both the 180 X 180 and 36 X 36

reference model, a major correction to the reference models occurs during the first and

second iterations. The lterative process converges In less than five iterations for

reasonable integration cap radius, such as one degree. The transformed gravity

anomalies based on 180 X 180 and 36 X 36 reference models are shown in Figures 28

and 29, respectively. Contour maps of the "true" geoid undulations and gravity anomalies

according to Rapp's 300 X 300 model are shown in Figures 30 and 31, respectively. The

iterative method does improve results when a good ( 180 X 180) reference surface is used,

but does not seem to materially improve the transformation when a poor (36 X 36)

reference surface is used.
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BLACK SEA GRAVITY ANOMALY MODEL (RAPP 36)

Ii !

Figure 25. A contour map of Rapp's 36 X 36 reference gravity anomalies (regal) of the

Black Sea.
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DIFFERENCE MAP (MGAL) OF THE BLACK SEA ( 180 -- 38)
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Figure 27. A contour map of the difference between estimated gravity anomalies [mgaI) of

the Black Sea using Rapp's 36 X 36 and 180 X 180 reference geopotential models.
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GRAVITY ANOMALIES OF THE BLACK SEA (RAPPo300. 180)
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Figure 28. A contour map of estimated gravity anomalies (mgal) of the Black Sea based

on Rapp's 180 X 180 reference geopotential model and the self-consistent iterative

approach. Rapp's 300 x 300 model geoid undulations are used as input data. This is a

test of the iterative approach.

39



I

I
I

I

I

!
a
!

I

!

!

!

i

I

I I

I I

I I

! I

I

I

I

I

I

i

I

.... I--

i I

I I

! I

i I

I I

I

I

I

I

LONGITUDE
t z /_B/O0

t

i
i

i

+

i

STX/ZNAYA

Figure 29. A contour map of estlmatcd gravity anomalies (regal) of the Black Sea based
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test of the iterative approach.
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BLACK SEA GEOID UNDULATION MODEL (RAPP 300)
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Figure 30. A contour map of Rapp's 300 X 300 reference geoid undulations (m above

mean sea level) of the Black Sea.
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BLACK SEA GRAVITY ANOMALY MODEL (RAPP 300)
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The sensitivity of the geold-to-gravity transformation to different covariance functions and

informaUon content of the reference models is quantified by determining the RMS of the

difference between the "true" gravity anomalies and the estimated ones, as shown In Table
1.

transformation

covarlance

functions

I
Rapp's [

Jordan's [Iterative

180 X 180 [ 36 X 36

reference model [ reference model

(mgal RMS) [ (mgal RMS)

[
4.47 [ 14.39

4.34 [ I I. 12

3. 19 [ 11.79

Table I Error of commission in the geoid-to-gravity transformation as a function of

different transformation algorithms using I ° cap size for the integration

region. Rapp's 180 X 180 and 36 X 36 models are used as reference
surfaces.

The RMS values represent the error of commission in the geoid-to-gravity transformation.

In order to stabilize the covariance matrix, an a-prlorl noise must be added. To make the

comparison fair, a common a-prlorl stabilizing variance of (25 cm) 2 was added for all

three covariance functions when the 180 X 180 reference field was used, and (60 cm) 2

was added whenever the 36 X 36 reference field was used. The iterative algorithm based

on empirical covariance functions, compared to the slngle-pass transformation based on

Rapp's and Jordan's covariance functions, generally yields the best recovered gravity

anomalies when the information spectra limit of the reference model is commensurate

with the cap size ( 180 X 180 model and I ° cap size).

When the stabilizing a-prlorl error variances are removed or reduced to lower values,

while still maintaining solution stability, the RMS error of commission is generally

reduced, along with the formal prediction error. For example, in the case of Jordan's

covariance function, when the a-prlorl variance is reduced to (10 cm) 2, the corresponding

values in Table 1 become 2.97 regal and 6.96 regal respectively for 180 X 180 and 36 X

36 reference models. In fact, these levels of stabilizing noise seem to be optimal for both

the Jordan and Rapp covariance functions, because lower and higher values of a-prlorl

noise result in larger RMS errors of commission. The error of commission for Rapp's

covariance function is universally a few percent higher than that for Jordan's covariance

function. On the other hand, (60 cm) 2 is optimal {and necessary) for the empirical local

covariance function. Based on these results, we conclude that Jordan's covariance

function is best for gravity prediction in the Black Sea region, and that the optimal level

ofa-priori noise is about I0 cm. Furthermore, we conclude that the error of commission

of the least squares collocation technique for gravity prediction is highly dependent on

the quality of the reference model and ranges from 3 to 7 mgal.

It should be appreciated that collocation is a statistical method that relies on the

transformation covarlance functions to provide the physics of the figure of the Earth and
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its gravityfield. TheiterativcalgorithmIsa hybridof a perturbationon the reference

surface and an information shaping/filtering process. The initial shaping filter, the

covariance function, should conform with the information content of the initial reference

surface. That Is, for a reference model whose short wavelength cutoff is at 1°, the

covarianee function should represent information of wavelengths shorter than 1° and the

integration cap size should have a commensurate size. It Is speculated that when the 36

X 36 model is used as reference surface, long-wavelength correction to the updated

reference surface is limited to wavelengths less than one degree because of the chosen

integration cap size of one degree. Wavelength components longer than one degree and

less than 5 degrees, therefore, must be corrected in order to improve the 36 X 36

reference model. The integration cap size, then, should be commensurate with its

shortest wavelength of the reference model. A large integration cap size, unfortunately,

will result in forbiddingly high computing cost unless the data grid for the initial iterative

steps is decimated. The cap size can be gradually reduced, as the data density is

gradually increased, in subsequent iterations. However, an algorithm developed to

maintain constant density of data in each iterative step, performed worse.

Further effort in the attempt of Improving the geold-to-gravity transformation algorithm

includes the use of local empirical anisotroplc covariance functions. A preliminary

progress report in this attempt is given in Brown et al. (1990).

V. GEOPHYSICAL INFERENCES

The inland sea region have undergone different episodes of orogeny. The gravity

anomalies characteristic of this region should bear the signatures of the past tectonic

activities. Before our predicted gravity results are integrated into the regional data base,

a reference regional gravity-anomaly map will first be reviewed.

A reference map of the gravity anomalies over the inland sea region derived from Rapp's

180 X !80 geopotential model is shown in Plate 1. The same regional map but with the

predicted gravity results for the inland seas superimposed on it is shown in Plate 2.

More detailed features over the inland seas can be delineated based on the predicted

results because the predicted results are derived from high-resolution altimetric geold

data. There are three areas where the predicted results deviate significantly from the

reference map. According to the reference model, the signature of the anomalies are

generally negative east of the Crimea and in the northern part of the Caspian Sea. At the

southern Caspian Sea, there seems to be a break in a broad region of negative anomalies.

Over the Aral Sea, the signature of the predicted gravity anomalies is generally negative.

According to the predicted results (see Plate 2), there is a band of positive anomalies east

of Crimea instead of a general low as shown in the reference map (Plate 1). At the

southern Caspian Sea, two aforementioned regions of negative anomalies are connected.

There is also a broad band of positive anomalies instead of general region of negative

anomalies at the northern part of the Caspian Sea. The signature of gravity anomalies

changed from negative to positive in the eastern and southern portion of the Aral Sea.

There Is, therefore, a continuous region of positive gravity anomalies extending from the

44



northern part of the Caspian Sea, across the Ust-Yurt Plateau, to the Kyzyl Kum. Aside

from these differences, the general features of the predicted results and the reference

model are quite compatible.

It has been speculated that there is a continuous suture running from the Crimea, along

the spine of the Greater Caucasus, through the Aspheron peninsula, across the southern

Caspian, and into the Kopet mountains (Seng6r, 1984). Our current data seems to be

compatible with such a conjecture. In the north, there is a band of positive anomalies in

alignment with the Dnleper-Donetsk aulacogen and the South Mangyshlak-Ust-Yurt ridge

and basin. This coincidence suggests that the Dnieper-Donetsk aulacogen and the South

Mangyshlak-Ust-Yurt ridge may be of a common origin. It has also been suggested that

there is a Tethyan geosyncilne tracing southward, running across the northern reach of

the Black Sea, into the northern part of the Caspian Sea, and then going northward.

Aside from these prominent features, the west Black Sea depression can also be

identified by the signature of the negative anomalies. However, the predicted anomalies

is positive over the east Black Sea depression. The Arkhangelsky Swell is coincident

with area of positive anomalies. Contrary to expectatlons, the Andrusov Swell and the

Shatsky Swell are coincident with areas of negative anomalies. This peculiar behavior in

the signature of gravity anomalies may be due to crustal flexure, because of the

compresslonal forces resulting from the northward movement of the Arabian promontory.

The gravity high over the east Black Sea depression may be a consequence of

compressional forces. Uncompensated sediment deposits at river deltas also show up as

positive gravity anomalies, such as the case for the Danube, the Volga, the Ural, the Syr-
Dar'ya and the Amu-Dar'ya.
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Plate 2. A contour map of predicted gravity anomalies (mgal)
of the inland seas region. (a) Continuous suture running

from the Crimea, along the spine of the Greater Caucasus,

through the Aspheron peninsula, across the southern
Caspian, and into the Kopet mountains; (b) Band of positive

anomalies In alignment with the Dnieper-Donetsk aulacogen

and the South Mangyshlak-Ust-Yurt ridge and basin; (el

Tethyan geosyncline tracing southward, running across the
northern reach of the Black Sea, into the northern part of the

Caspian Sea, and then going northward; (a) The west Black

Sea depression; (_) The east Black Sea depression; (t) The
Andrusov Swell; (_) The Arkhangelsky SweU; (.) The

Shatsky Swell; (,) The Danube delta; 0) The Volga delta; (k)
The Ural delta; (Q) The Syr-Dar'ya delta and (.,} The Amu-

Dar'ya delta.
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